

HOT FIREPol® DNA Polymerase

(5 U/µI)

Catalogue Number	Pack Size (5 U/µI)
01-02-0000S	100 U
01-02-00500	500 U
01-02-01000	1000 U

Shipping:

At room temperature

Batch Number and Expiry Date: See vial Stability at room temperature 1 M ONTH

Store at -20 °C

1/8

Storage and Stability:

• Routine storage at - 20 °C until expiry date

- Can be stored at +4 °C for up to 6 months
- Stability at room temperature (15-25 °C) for 1 month
- · Freeze-thaw stability: 30 cycles

Reaction setup:

At room temperature

Manufactured by Solis BioDyne, in compliance with the ISO 9001 and ISO 13485 certified Quality Management System.

DS-01-02 v1

- HOT FIREPOI® DNA Polymerase (5 units/µl) in 20 mM Tris-HCl pH 8.7 at 25 °C, 100 mM KCl, 0.1 mM EDTA, 50 % glycerol (v/v), and stabilizers.
- HOT FIREPol[®] 10x Buffer B1 (Mg²⁺ and detergent free): 0.7 M Tris-HCl. 0.175 M (NH₄)₂SO₄.
- HOT FIREPol[®] 10x Buffer B2 (Mg²⁺ free, with detergent): 0.7 M Tris-HCI, 0.175 M (NH₄)₂SO₄, 0.2% w/v Tween-20.

HOT FIREPol® 10x Buffer B2 contains non-ionic detergent suppressing inhibitory effects of the trace of DNA extraction buffers and enhancing PCR yield and efficiency.

- 25 mM MqCl₂
- 10x Solution S is an additive that facilitates amplification of difficult templates (e.g. GC-rich DNA templates).

This solution should be used at a defined final concentration (1x, 2x or 3x solution). 10x Solution S is NOT a reaction buffer and should be used ONLY IF non-specific amplification occurs.

Additional reagents required:

- Template DNA
- Gene-specific primer pair
- dNTP Mix (20 mM of each, Cat. No. 02-31-00020)
- Nuclease-free PCR Grade Water (Cat. No. water-025)

Product description:

- HOT FIREPol[®] is a chemically modified FIREPol[®] DNA Polymerase enabling hot-start PCR that improves specificity and accuracy, minimizes mispriming and extension from nonspecifically annealed primers and primer-dimers.
- HOT FIREPol[®] is inactive at room temperature and is activated by an initial activation step for 15 min at 95 °C.
- Recommended for routine applications (fragment up to 3 kb from genomic DNA).
- Possesses 5'→3' polymerase and 5'→3' endonuclease activity, as well as a non-template-dependent terminal transferase activity, but lacks a 3'→5' exonuclease (proofreading) activity making the generated product suitable for TA-cloning.
- The fidelity of HOT FIREPol[®] is similar to a regular Taq DNA Polymerase (error rate per nucleotide ca 2.5 x10⁻⁵).

Contents:

	Catalogue Number			
	01-02-	01-02-	01-02-	
Component	0000S	00500	01000	
HOT FIREPol® DNA	100 U /	500 U /	1000 U /	
Polymerase (5 U/µI)	20 µl	100 µl	200 µl	
HOT FIREPol® 10x Buffer B1	500 µl	2.5 ml	5.0 ml	
HOT FIREPol® 10x Buffer B2	500 µl	2.5 ml	5.0 ml	
25 mM MgCl₂	500 µl	2.5 ml	5.0 ml	
10x Solution S	100 µl	100 µl	500 µl	

Step-by-step guidelines:

 Thaw the reagents at room temperature. Mix each reagent by gentle vortexing or pipetting up and down, then centrifuge briefly.

2/8

Prepare a reaction mix at room temperature. Add all required components except the template DNA.

Component	Volume ¹	Final conc.
HOT FIREPol® DNA Polymerase (5 U/µI)	0.08-0.2 µl	0.02-0.05 U/µl
HOT FIREPol® 10x Buffer B1 or B2	2 μΙ	1x
25 mM MgCl₂	1.2-2 µl	1.5-2.5 mM
dNTP Mix (20 mM of each)	0.2 μΙ	200 μM of each
Forward Primer (10 µM)	0.2-0.6 µl	100–300 nM
Reverse Primer (10 µM)	0.2-0.6 µl	100–300 nM
10x Solution S (optional)	2, 4 or 6 µl	1x, 2x or 3x
Template DNA (added at step 4)	Variable	Variable ²
Nuclease-free water	up to 20 µl	
Total reaction volume	20 µl	

¹ Scale all components proportionally according to sample number and reaction volumes. Make sure you use enough of each reagent for your reactions, plus 10% extra volume to accommodate pipetting errors.

3/8 4/8

² For low complexity templates (i.e. plasmid, lambda), use 20 pg–2 ng of DNA per 20 µl reaction. For higher complexity templates (i.e. gDNA), use 2 ng–200 ng of DNA per 20 ul reaction.

- 3. Mix the reaction mix thoroughly, then centrifuge briefly. Dispense appropriate volumes of mix into PCR wells.
- 4. Add template DNA to the PCR wells. Seal the wells using the procedure recommended for the cycling instrument being used, and centrifuge the reactions briefly.
- 5. Incubate your PCR reactions in thermal cycler as follows.

Step	Temperature	Time	Cycles
Initial activation ¹	95 °C	12–15 min	1
Denaturation	95 °C	15-30 sec	
Annealing ²	50–68 °C	30-60 sec	26–35
Extension ²	72 °C	45 sec-4 min	
Final extension	72 °C	5–10 min	1

 $^{^{\}rm 1}$ Initial incubation at 95 °C for 12-15 min is needed for the activation of polymerase and denaturation of template DNA.

Recommendations for a successful PCR experiment

Prerequisites for a successful PCR include the design of optimal primers, the use of high-quality template DNA and appropriate concentrations of reaction components.

Use dedicated software, such as Primer3 and NCBI Primer-BLAST to design target-specific primers. The optimal primer length is 20–30 bp, with GC-content 35–65% and calculated melting temperatures (T_m) 60–70 °C. T_m of the two primers should not differ

5/8

 Reaction components are degraded – check the storage conditions and expiry date of the reagents; perform a positive control with template DNA and/or reagents previously known to amplify.

Non-specific products

- Non-specific amplification ensure that your primers are target-specific.
- Primer concentration is not optimal titrate primers (final concentration 100–300 nM of each); too high primer concentration can reduce the binding specificity, resulting in unwanted products.
- Primer annealing temperature (T_a) is too low increase the T_a; keep your primer T_a 2–5 °C below the T_m of the primer having the lowest T_m.
- Too many cycles reduce the cycle number by 3-5.
- Contamination to avoid contamination, work in dedicated space, keep pre- and post-amplification areas separate, use personal protective equipment, decontaminate your surfaces and equipment, if possible, aliquot your reagents into smaller volumes to prevent contamination of stock solutions.

Smearing in electrophoresis

- Too much template load lower amount or prepare serial dilutions of template.
- Too many cycles reduce the cycle number by 3–5.
- · Extension time is too long reduce extension time.
- Primer design is not optimal review your primers and redesign the primers if needed.
- Enzyme concentration is too high decrease the amount of enzyme in final solution by 0.005 U/µl increments (optimal enzyme concentration in final PCR solution is 0.02–0.05 U/µl).

by more than 3 °C. Analyze your primers for self-complementarity and stable secondary structures, presence of secondary structures increases probability of mis-priming and primer-dimers formation.

The integrity, purity and concentration of the DNA template should be suitable for the PCR experiment. Always include a no-template control (NTC) by replacing the DNA template with the same volume of nuclease-free water.

Please see the Troubleshooting Guide below for suggestions and help with specific problems.

Troubleshooting Guide

No or low PCR yield

- HOT FIREPol® DNA Polymerase was not activated make sure that your PCR starts with an initial incubation for 12-15 min at 95 °C.
- Cycling conditions are not optimal decrease annealing temperature (T_a); if needed determine the optimal T_a by running a temperature gradient; increase the extension time (if amplifying a long target); increase the number of cycles by 3–5.
- Poor quality of template check the template's purity and integrity, ensure that your template doesn't contain PCR inhibitors.
- Template concentration is too low increase the concentration of DNA template.
- Primer concentration is not optimal titrate primer concentration (final concentration 100–300 nM of each); ensure that both primers have the same concentration.

6/8

Source:

 ${\it E. coli} \ strain \ that \ carries \ an \ overproducing \ plasmid \ with \ a \ modified \ gene \ of \ Thermus \ aquaticus \ DNA \ Polymerase.$

Unit definition:

One unit is defined as the amount of enzyme required to catalyze the incorporation of 10 nmol of dNTPs into an acid-insoluble form in 30 minutes at 74 $^{\circ}\text{C}$.

Quality control:

The enzyme is free of nicking and priming activities, exonucleases and non-specific endonucleases. SDS/PAGE 95 kD band, >98% pure. Activity and stability tested via thermocycling. The error rate per nucleotide per cycle is ca 2.5×10^{-5} ; the accuracy is ca 4×10^{4} . Estimated half-life at $95 \, \text{°C}$ is $1.5 \, \text{hours}$.

Safety precautions:

Please refer to Safety Data Sheet for more information.

Technical support:

Contact your sales representative for any questions or send an email to support@solisbiodyne.com

Revised 04.02.2020

This product is supplied for research use only. Covered by patent EP2501716, made following the methods of US Patent No 9,321,999.

FIREPol® is a registered trademark of Solis BioDyne OÜ.

² The annealing temperature depends on the melting temperature of the primers. Extension time depends on the length of the fragment to be amplified. A time of 1 min/kb is recommended.